Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis

Theodore J. Iwashyna, MD, PhD
E. Wesley Ely, MD, MPH
Dylan M. Smith, PhD
Kenneth M. Langa, MD, PhD

Context Cognitive impairment and functional disability are major determinants of caregiving needs and societal health care costs. Although the incidence of severe sepsis is high and increasing, the magnitude of patients’ long-term cognitive and functional limitations after sepsis is unknown.

Objective To determine the change in cognitive impairment and physical functioning among patients who survive severe sepsis, controlling for their presepsis functioning.

Design, Setting, and Patients A prospective cohort involving 1194 patients with 1520 hospitalizations for severe sepsis drawn from the Health and Retirement Study, a nationally representative survey of US residents (1998-2006). A total of 9223 respondents had a baseline cognitive and functional assessment and had linked Medicare claims; 516 survived severe sepsis and 4517 survived a nonsepsis hospitalization to at least 1 follow-up survey and are included in the analysis.

Main Outcome Measures Personal interviews were conducted with respondents or proxies using validated surveys to assess the presence of cognitive impairment and to determine the number of activities of daily living (ADLs) and instrumental ADLs (IADLs) for which patients needed assistance.

Results Survivors’ mean age at hospitalization was 76.9 years. The prevalence of moderate to severe cognitive impairment increased 10.6 percentage points among patients who survived severe sepsis, an odds ratio (OR) of 3.34 (95% confidence interval [CI], 1.53-7.25) in multivariable regression. Likewise, a high rate of new functional limitations was seen following sepsis: in those with no limits before sepsis, a mean 1.57 new limitations (95% CI, 0.99-2.15); and for those with mild to moderate limitations before sepsis, a mean 1.50 new limitations (95% CI, 0.87-2.12). In contrast, nonsepsis general hospitalizations were associated with no change in moderate to severe cognitive impairment (OR, 1.15; 95% CI, 0.80-1.67; P for difference vs sepsis = .01) and with the development of fewer new limitations (mean among those with no limits before hospitalization, 0.48; 95% CI, 0.39-0.57; P for difference vs sepsis < .001 and mean among those with mild to moderate limits, 0.43; 95% CI, 0.23-0.63; P for difference = .001). The declines in cognitive and physical function persisted for at least 8 years.

Conclusions Severe sepsis in this older population was independently associated with substantial and persistent new cognitive impairment and functional disability among survivors. The magnitude of these new deficits was large, likely resulting in a pivotal downturn in patients’ ability to live independently.

We studied whether an incident episode of severe sepsis increased the odds of subsequent worsened cognitive impairment and functional disability among survivors. We took advantage of a nationally representative ongoing cohort study of older Americans that included detailed information from personal surveys and personal assessments.
Patients were followed up through 1998-2005 (on a hospitalization for severe sepsis were subsequent claims-based data assessing were assessed and for whom there least 1 interview during 1998-2004 in a hospitalization was included. Every 2 years, the cohort is reinterviewed. The HRS achieved a very high follow-up rate, typically exceeding 90% to 95% in-
ccluding an organ dysfunction score (the sum of the number of organ failures of cardiovascular, neurologic, hematologic, hepatic, renal, or respiratory origin).5,17 Self-reported race and ethnicity were included only in the descriptive statistics because they may be of interest to some readers.

Definition of Severe Sepsis

We relied on a claims-based definition of severe sepsis, which has been widely used and clinically validated.3 This definition requires evidence of both an infection and new-onset organ dysfunction during a single hospitalization. If a patient had more than 1 distinct septic hospitalization, each hospitalization was included.

As a comparison, we conducted parallel analyses in a cohort of 5574 hospitalizations. These were first hospitalizations for members of the linked Medicare cohort, which included neither severe sepsis nor critical care use and for which a baseline survey and at least 1 follow-up interview were available.

Definition of Functional Status

At each wave of the survey, we asked respondents if they required assistance with any of 6 activities of daily living (ADLs: walking, dressing, bathing, eating, getting into and out of bed, and toileting) or 5 instrumental ADLs (IADLs: preparing a hot meal, shopping for groceries, making telephone calls, taking medicines, and managing money). We totaled the number of ADLs and IADLs to create a total deficiency score (range, 0 requiring no assistance to 11 requiring assistance for all categories).18 The survey asked proxies to evaluate the functional status of patients who could not answer for themselves; proxies could answer these questions with high reliability.18 For some analyses, a baseline of functioning was defined, using the last survey prior to severe sepsis. It was decided a priori that patients would be divided into 3 groups based on their baseline functioning: no limits, 0; mild to moderate, 1 to 3; and severe limitations, 4 or more deficiencies.

Definition of Cognitive Impairment

The survey assessed cognitive function in 2 ways during biennial personal interviews. For those aged 65 years or older, a 35-point scale was administered that included tests of memory, serial 7 subtractions, naming, and orientation.19,20 For self-respondents younger than 65 years, the survey tool administered a more limited 27-point scale that excluded the orientation measures.

For patients 65 years or older who were unable to be interviewed themselves, the validated Informant Questionnaire on Cognitive Decline in the Elderly21 was administered to proxies. For proxies representing respondents younger than 65 years, the following questions were used to determine cognitive function: “How would you rate [the respondent’s] memory at the present time?” and “How would you rate [the respondent] in making judg-

Methods

Data Source

The Health and Retirement Study (HRS) is an ongoing cohort nationally representative of community-dwelling US residents older than 50 years. Begun in 1992, more than 27,000 individuals have contributed 200,000 hours of data-collection interviews. Every 2 years, the cohort is reinterviewed. The HRS achieved a very high follow-up rate, routinely exceeding 90% to 95% including proxies.18 Furthermore, 16,772 participants have consented for linkage of their study data with Medicare.

This work was approved by the University of Michigan Institutional Review Board. Patients provided informed consent on enrollment in the HRS and again for linkage to Medicare claims.

We studied all respondents with at least 1 interview during 1998-2004 in which cognitive and physical functioning were assessed and for whom there were subsequent claims-based data on a hospitalization for severe sepsis during 1998-2005 (Figure 1). All patients were followed up through death or the 2006 survey. Our primary analyses focus on hospitalizations that patients survived long enough to participate in at least 1 follow-up interview.

Characteristics of the hospitalizations for severe sepsis were abstracted from the Medicare claims, including an organ dysfunction score (the sum of the number of organ failures of cardiovascular, neurologic, hematologic, hepatic, renal, or respiratory origin).5,17 Self-reported race and ethnicity were included only in the descriptive statistics because they may be of interest to some readers.

Definition of Severe Sepsis

We relied on a claims-based definition of severe sepsis, which has been widely used and clinically validated.3 This definition requires evidence of both an infection and new-onset organ dysfunction during a single hospitalization. If a patient had more than 1 distinct septic hospitalization, each hospitalization was included.

As a comparison, we conducted parallel analyses in a cohort of 5574 hospitalizations. These were first hospitalizations for members of the linked Medicare cohort, which included neither severe sepsis nor critical care use and for which a baseline survey and at least 1 follow-up interview were available.

Definition of Functional Status

At each wave of the survey, we asked respondents if they required assistance with any of 6 activities of daily living (ADLs: walking, dressing, bathing, eating, getting into and out of bed, and toileting) or 5 instrumental ADLs (IADLs: preparing a hot meal, shopping for groceries, making telephone calls, taking medicines, and managing money). We totaled the number of ADLs and IADLs to create a total deficiency score (range, 0 requiring no assistance to 11 requiring assistance for all categories).18 The survey asked proxies to evaluate the functional status of patients who could not answer for themselves; proxies could answer these questions with high reliability.18 For some analyses, a baseline of functioning was defined, using the last survey prior to severe sepsis. It was decided a priori that patients would be divided into 3 groups based on their baseline functioning: no limits, 0; mild to moderate, 1 to 3; and severe limitations, 4 or more deficiencies.

Definition of Cognitive Impairment

The survey assessed cognitive function in 2 ways during biennial personal interviews. For those aged 65 years or older, a 35-point scale was administered that included tests of memory, serial 7 subtractions, naming, and orientation.19,20 For self-respondents younger than 65 years, the survey tool administered a more limited 27-point scale that excluded the orientation measures.

For patients 65 years or older who were unable to be interviewed themselves, the validated Informant Questionnaire on Cognitive Decline in the Elderly21 was administered to proxies. For proxies representing respondents younger than 65 years, the following questions were used to determine cognitive function: “How would you rate [the respondent’s] memory at the present time?” and “How would you rate [the respondent] in making judg-
ments and decisions?” The response options for both of these questions were excellent, very good, good, fair, or poor.

We defined cut points on the cognitive assessments for mild and moderate to severe cognitive impairment based on prior studies with the HRS data, as well as the methods used for the Aging, Demographics, and Memory Study (ADAMS), a supplemental study of dementia in the HRS. These cut points defined a level of cognitive impairment that was generally consistent with mild and moderate to severe dementia in the ADAMS. Further detail on the cognitive measures is available.

Analyses

For analyses of functional status, our primary outcome was measured by a combined ADL and IADL score. For unadjusted analyses, we grouped patients by the number of surveys they had completed since severe sepsis occurrence; for example, we compared all patients at their last survey before hospitalization with severe sepsis with patients at their first survey after severe sepsis. For multivariable models, we used longitudinal models to examine the association between the timing of severe sepsis and the timing of functional changes. These models used only within-person variation over time in functional status to estimate the impact of severe sepsis, and thereby controls for all characteristics of the patient that did not change over time—indeed, patients served as their own controls. Specifically, we constructed latent growth curve models using a hospitalization-level fixed effect, sometimes called conditional models. These results controlled for not only the functional status of the patient before his/her sepsis episode but also for functional trajectory. All of these sequential evaluations were included in the analysis. In these models, time from admission with severe sepsis to survey interview was measured to the day as a continuous variable. Additional information about the statistical approach is presented in the eMethods appendix, including alternative specifications (available at www.jama.com).

Fixed effects models were estimated using xtreg, fe in Stata 10.1 (StataCorp LP, College Station, Texas). These analyses were not conducted according to a fully prespecified protocol.

For analyses of cognitive functioning, our primary outcome was level of cognitive impairment. Unadjusted analyses were conducted as for functional status. For multivariable analyses, we used conditional logistic regression to analyze the impact of severe sepsis on moderate to severe cognitive impairment among survivors, using clogit in Stata 10.1. As for functional status, these analyses used only within-person variation over time to estimate the effect of severe sepsis, controlling for time-invariant characteristics of the respondent.

All analyses were conducted with hospitalization as the unit of analysis unless otherwise indicated. Two-sided significance testing was used throughout, and a P value of .05 was considered statistically significant.

RESULTS

There were 1520 identified episodes of severe sepsis among 1194 respondents for the years 1998-2005, from a cohort of 9223 respondents (Figure 1). Detail about the entire population of severe sepsis hospitalizations is presented in eTable 1. Ninety-day mortality after severe sepsis was 41.3% (95% confidence interval [CI], 38.8%-43.8%); 5-year mortality, 81.9% (95% CI, 79.8%-84.0%). Five-year survival curves are presented in eFigure (available at www.jama.com). Five hundred sixteen individuals survived 623 episodes of severe sepsis and had at least 1 follow-up survey; these hospitalizations by survivors are our primary cohort for analysis (Table 1). Patients were followed up for up to 4 surveys (7.8 years) of data prior to severe sepsis and up to 4 surveys (8.3 years) afterward.

Cognitive Outcomes

Incident severe sepsis was associated with a clinically and statistically significant increase in moderate to severe cognitive impairment among survivors. For example, 6.1% (95% CI, 4.2%-8.0%) of eventual survivors had moderate to severe cognitive impairment at the survey just before severe sepsis, and the prevalence increased to 16.7% (95% CI, 13.8%-19.7%) at the first survey after severe sepsis (Figure 2, P < .001 by χ² test). In fixed-effects regression, with each patient serving as his/her own control, the incidence of severe sepsis remained highly associated with progression to moderate to severe cognitive impairment (odds ratio [OR], 3.34; 95% CI, 1.53-7.25; Table 2). No association existed between severe sepsis and the net prevalence of mild cognitive impairment in adjusted or unadjusted analyses; nearly equal numbers of previously normal patients developed mild cognitive impairment after severe sepsis as patients with presepsis mild cognitive impairment developed postsepsis moderate to severe cognitive.

Functional Outcomes

Survivors of hospitalization for severe sepsis were at greater risk of additional functional limitations at their next survey. This was a substantial worsening in their trajectory relative to before their sepsis hospitalization. The negative effects of severe sepsis were greater in those patients with better baseline physical functioning (Figure 3). The new functional deficits were not concentrated in any particular subset of the functioning measures (Figure 4).

The independent effects of severe sepsis on long-term disability persisted in multivariable analyses with each patient’s presepsis functional trajectory serving as his/her own control. Table 3 shows that severe sepsis was associated with the development of 1.57 (95% CI, 0.99-2.15) new limitations among patients who had none before sepsis. Patients with mild to moderate limitations before sepsis had a similar increase of 1.50 (95% CI, 0.87-2.12) new IADL and ADL limitations. For such patients, not only was sepsis
Table 1. Demographics of Study Cohort of Survivors, by Baseline Physical Functioning (n = 623)\(^a\)

<table>
<thead>
<tr>
<th>Functional Class at Baseline by Limitations</th>
<th>None</th>
<th>Mild to Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>269</td>
<td>195</td>
<td>159</td>
</tr>
<tr>
<td>Men, No. (%)</td>
<td>143 (53)</td>
<td>92 (47)</td>
<td>46 (29)</td>
</tr>
<tr>
<td>Race/ethnicity, No. (%)</td>
<td>Black</td>
<td>Hispanic</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>49 (18)</td>
<td>19 (7)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>9 (3.4)</td>
<td>13 (7)</td>
<td></td>
</tr>
<tr>
<td>Age at sepsis, mean (SD), y</td>
<td>75.8 (7.5)</td>
<td>77.6 (9.5)</td>
<td>79.1 (9.6)</td>
</tr>
<tr>
<td>Length of stay, mean (SD), d</td>
<td>11.4 (10.7)</td>
<td>11.3 (11.2)</td>
<td>8.5 (6.3)</td>
</tr>
<tr>
<td>Required mechanical ventilation, No. (%)</td>
<td>64 (23)</td>
<td>32 (16)</td>
<td>27 (17)</td>
</tr>
<tr>
<td>Required dialysis, No. (%)</td>
<td>9 (3.4)</td>
<td>6 (3.1)</td>
<td>12 (7.6)</td>
</tr>
<tr>
<td>Used an intensive care unit, No. (%)</td>
<td>137 (51)</td>
<td>75 (38)</td>
<td>57 (36)</td>
</tr>
<tr>
<td>Underwent major surgery, No. (%)</td>
<td>73 (27)</td>
<td>39 (20)</td>
<td>15 (9)</td>
</tr>
<tr>
<td>Required dialysis, No. (%)</td>
<td>9 (3.4)</td>
<td>6 (3.1)</td>
<td>12 (7.6)</td>
</tr>
<tr>
<td>Acute conditions, No. (%)</td>
<td>64 (23)</td>
<td>32 (16)</td>
<td>27 (17)</td>
</tr>
<tr>
<td>Cardiovascular dysfunction</td>
<td>60 (22)</td>
<td>62 (32)</td>
<td>45 (28)</td>
</tr>
<tr>
<td>Neurologic dysfunction</td>
<td>19 (7)</td>
<td>20 (10)</td>
<td>17 (11)</td>
</tr>
<tr>
<td>Hemolotic dysfunction</td>
<td>61 (23)</td>
<td>34 (17)</td>
<td>27 (17)</td>
</tr>
<tr>
<td>Hepatic dysfunction</td>
<td>2 (1)</td>
<td>0 (0)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Renal dysfunction</td>
<td>103 (38)</td>
<td>79 (41)</td>
<td>60 (38)</td>
</tr>
<tr>
<td>Respiratory dysfunction</td>
<td>64 (24)</td>
<td>32 (16)</td>
<td>27 (17)</td>
</tr>
<tr>
<td>Baseline, No. (%)</td>
<td>254 (94)</td>
<td>182 (93)</td>
<td>105 (66)</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>None</td>
<td>Mild</td>
<td>Moderate to severe</td>
</tr>
<tr>
<td>None</td>
<td>254 (94)</td>
<td>182 (93)</td>
<td>105 (66)</td>
</tr>
<tr>
<td>Mild</td>
<td>15 (5.6)</td>
<td>9 (4.6)</td>
<td>20 (12.6)</td>
</tr>
<tr>
<td>Moderate to severe</td>
<td>0</td>
<td>4 (2.1)</td>
<td>34 (21.4)</td>
</tr>
<tr>
<td>Physical function deficiencies, mean (SD)</td>
<td>0</td>
<td>1.3 (0.9)</td>
<td>4.0 (1.7)</td>
</tr>
<tr>
<td>Basic ADL</td>
<td>0</td>
<td>0.5 (0.7)</td>
<td>3.0 (1.5)</td>
</tr>
<tr>
<td>Instrumental ADL</td>
<td>0</td>
<td>1.3 (0.9)</td>
<td>4.0 (1.7)</td>
</tr>
<tr>
<td>Proxy respondent, No. (%)</td>
<td>9 (3)</td>
<td>22 (11)</td>
<td>59 (37)</td>
</tr>
<tr>
<td>At baseline</td>
<td>9 (3)</td>
<td>22 (11)</td>
<td>59 (37)</td>
</tr>
<tr>
<td>At first postsepsis survey</td>
<td>46 (17)</td>
<td>47 (24)</td>
<td>87 (55)</td>
</tr>
</tbody>
</table>

Abbreviation: ADL, activity of daily living.

\(^a\)Data for the entire cohort of incident severe sepsis hospitalizations are in eTable 1, and risk factors for cognitive impairments are presented in eTable 2 (both available at www.jama.com).

Figure 2. Cognitive Impairment Among Survivors of Severe Sepsis at Each Survey Time Point

Error bars indicate 95% confidence intervals (CIs); IQR, interquartile range.

Interpretive Example: Compared with stable rates before severe sepsis, the prevalence of moderate to severe cognitive impairment increased from 6.1% (95% CI, 4.2%-8.0%) before severe sepsis to 16.7% (95% CI, 13.8%-19.7%) at the first survey after severe sepsis (P < .001 by χ² test; Table 2).

COGNITIVE IMPAIRMENT, DISABILITY, AND SEVERE SEPSIS

Comparison to Other Hospitalizations

The changes in physical and cognitive functioning noted after severe sepsis were worse than those seen after nonsepsis general hospital admissions in a cohort of 4517 survivors of 5574 hospitalizations. Thus, patients who did not develop severe sepsis and who had no functional limitations prior to their hospitalization developed an average of 0.48 (95% CI, 0.39-0.57; n = 2852; P for difference vs sepsis < .001, eTable 3) new functional limitations. Patients with mild to moderate functional limitations at baseline developed 0.43 (95% CI, 0.23-0.63; n = 1124; P for difference <.001; eTable 3) new functional limitations after a nonsepsis hospitalization.
sis general hospitalization. Furthermore, nonsepsis general hospitalizations were not associated with a clinically or statistically significant increase in the odds of moderate to severe cognitive impairment (OR, 1.15; 95% CI, 0.80-1.67; n=4517; P for difference = .01, eTable 4 available at www.jama.com)

Subgroup and Sensitivity Analyses

We replicated our analyses in several subgroups to examine their robustness. The effects of severe sepsis were similar in the 500 survivors who had severe sepsis but who did not require mechanical ventilation. The regression demonstrated similarly increased odds (OR, 4.0; 95% CI, 1.71-9.31) of developing moderate to severe cognitive impairment after severe sepsis among patients who were not mechanically ventilated. Similarly, in the 205 survivors with no limitations at baseline, severe sepsis without mechanical ventilation was associated with the development of 1.56 new functional limitations (95% CI, 0.91-2.22) in multivariable fixed-effects models. For the 163 patients with mild to moderate limitations, severe sepsis without mechanical ventilation was associated with 1.65 new functional limitations (95% CI, 1.01-2.28).

A potential threat to the validity of the results is that patients may have experienced some other cause of cognitive and functional decline between their baseline survey and their sepsis hospitalization. Therefore, we reanalyzed data for the smaller subset of 276 survivors who were never hospitalized between their baseline survey and their severe sepsis admission. We found consistent results, albeit with larger standard errors. In this subpopulation, severe sepsis was associated with increased odds of moderate to severe cognitive impairment (OR, 2.49; 95% CI, 0.99-6.26). In the 128 patients with no functional limitations at baseline and no intercurrent hospitalizations, severe sepsis was associated with the development of 1.46 new functional limitations (95% CI, 0.76-2.15). In the 86 patients with mild to moderate functional limitations at baseline and no intercurrent hospitalizations, severe sepsis was associated with the development of 1.34 new functional limitations (95% CI, 0.34-2.34).

Further sensitivity analyses yielded consistent results. The associations between severe sepsis and functional and cognitive impairment were substantively similar in those aged 65 years or older at baseline cognitive assessment and who therefore were assessed using a single instrument before and after severe sepsis (eTables 5 and 6). The patterns observed for functional limitations were similar in a larger cohort of 2043 hospitalizations (including 829 hospitalizations among 684 survivors) for severe sepsis followed up for up to 14 years during the period 1992-2006 (eTable 7). Examining only the subset of 516 first sepsis admissions for each survivor—that no patient appeared in the analysis more than once—yielded nearly identical results (eTables 8 and 9).

COMMENT

In this nationally representative cohort, we have demonstrated for the first time that severe sepsis is independently associated with enduring cognitive and functional limitations. Severe sepsis is independently associated with a tripling in the odds of moderate to severe cognitive impairment. Furthermore, severe sepsis was indepen...

Table 2. Severe Sepsis and Moderate to Severe Cognitive Impairment Among Survivors

<table>
<thead>
<tr>
<th>Effect of sepsis</th>
<th>Odds Ratio (95% Confidence Interval)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before sepsis</td>
<td>1.35 (1.11-1.65)</td>
<td>.002</td>
</tr>
<tr>
<td>After sepsis</td>
<td>1.68 (1.28-2.21)</td>
<td>.001</td>
</tr>
</tbody>
</table>

Figure 3. Functional Trajectories by Baseline Functioning

The unadjusted mean number of functional limitations of surviving cohort members is shown. Error bars indicate 95% confidence intervals.

Interpretive Example: Groups that had no functional or mild to moderate limitations before sepsis had a stable trajectory before sepsis but developed about 2 new limitations after sepsis. But patients with severe limitations at baseline had a modest increase from a baseline of 6.99 to 7.98 at their first survey after sepsis (Table 3).
COGNITIVE IMPAIRMENT, DISABILITY, AND SEVERE SEPSIS

dently associated with the acquisition of 1.5 new functional limitations in patients with no, mild, or moderate pre-
existing functional limitations. These new disabilities were substantially larger than those seen after nonsepsis general hospital admissions. Cognitive and functional declines of the magnitude seen after severe sepsis are associated with significant increases in caregiver time, nursing home admission, depression, and mortality. These data argue that the burden of sepsis survivorship is a substantial, underrecognized public health problem with major implications for patients, families, and the health care system.

Our findings, and the nationally representative data from the HRS, allow us to make an estimate of the overall public health burden of sepsis on “brain health” among older adults in the United States. Given published dementia1 and sepsis2 incidence rates for those aged 65 years or older in the United States, our results suggest that nearly 20,000 new cases per year of moderate to severe cognitive impairment in the elderly may be attributable to sepsis. Thus, an episode of severe sepsis, even when survived, may represent a sentinel event in the lives of patients and their families, resulting in new and often persistent disability, in some cases even resembling dementia.3,22,32,33

The level of severe cognitive impairment found in these patients has been associated with an additional 40 hours per week of informal care provided by families,3 analogous to an additional full-time job. If causally related, this represents a substantial public health burden of accelerated or de novo brain dysfunction, and one that has received almost no attention, even in the face of the dramatically increasing incidence of severe sepsis.3 In marked contrast to Alzheimer disease and some other forms of dementia, onset and acceleration of cognitive impairment due to sepsis is likely partially preventable in many patients. These benefits might be achieved by raising the standard of care for patients who develop sepsis—both sepsis-specific care as well as other intensive care unit practices such as sedation management and early physical and cognitive rehabilitation—and by avoiding sepsis altogether.34 Improving the prevention and management of sepsis may warrant a place in the broader brain health and disability agendas.

Although an observational study can never prove causation, there are multiple plausible causal pathways by which sepsis and its treatment may lead to significant declines in physical and cognitive function. The literature on intensive care unit–acquired weakness and chronic illness myopathy and polyneuropathy suggests that there is a direct inflammatory and hypoperfusion-mediated degradation of muscle fibers and neurons,35-37 which may be exacerbated by prolonged immobility38 and lack of physical therapy.39 Similarly, frank hypotension or relative hypoperfusion may directly contribute to brain injury and subsequent cognitive impairment.40-42

Inflammation—a cardinal component of the pathophysiology of sepsis—is hypothesized to contribute to both vascular dementia and Alzheimer disease.6,10,43 Delirium, an acute form of brain dysfunction characterized by inattention, is common in sepsis, preventable, and treatable.44,45 Delirium has been associated with increased cognitive decline among patients with Alzheimer disease,46 as well as with increased rates of long-term cognitive impairment in mechanically ventilated patients.47 Basic biological research to understand these mechanisms is clearly warranted. Equally pressing is the need for innovative clinical trials of both sepsis-specific therapy and improved life support. Our results suggest that such trials should look beyond short-term mortality to long-term cognitive and functional outcomes of crucial interest to patients.48

We conducted analyses that address several possible limitations. The regressions used only within-person variation to estimate the association with severe sepsis; thus, characteristics of the survivors that did not change over time cannot explain the timing of changes in cognitive and functional status. The different cognitive and physical function out-
comes between the survivors of severe sepsis and of the comparison general hospitalizations suggest that the sepsis results were not simply due to the aging of the cohort or the mere fact of hospitalization, processes shared equally by both groups. These different outcomes also suggest that our results cannot be attributed solely to asymmetric censoring, one form of a potential bias known as "truncation by death." However, because patients with worse cognitive and physical functioning have greater mortality (eFigure, available at www.jama.com), there may be some conservative bias in our results. This form of truncation by death results if patients with the worst cognitive and physical declines after sepsis do not survive long enough for a follow-up survey. To the extent that such truncation by death is present, the full effect of severe sepsis on cognitive and physical functioning would be even greater than we measured.

Our study has several limitations. Unlike prior studies that have focused on acute functional decline in the perihospitalization period, the present results demonstrate only long-term effects; short-term deficits (eg, less than 6-12 months) are likely greater, with at least some patients recovering some function prior to their next HRS biennial survey. The neuropsychological battery that we used provided an assessment of global cognitive function, but did not allow detailed study of individual cognitive domains nor did it establish a definitive clinical diagnosis of dementia. Importantly, we used cognitive categories and cutoff scores that have shown good correlation with clinical dementia and expected outcomes of dementia in prior studies. We used a claims-based definition of severe sepsis. Although this is not the same as prospective clinical assessment, it is the same approach used in recent landmark epidemiological studies. Our data were restricted to fee-for-service Medicare patients aged 65 years or older. We have shown that these deteriorations were temporally associated with severe sepsis and independent of other stable patient characteristics, but we have not conclusively proved that it was severe sepsis rather than other simultaneous events that led to these declines. Although, to our knowledge, this is the largest study to date of severe sepsis and our outcomes of interest, our study was not powered to examine interactions, such as the extent to which the changes after sepsis varied with the number of organ failures or type of infecting organism. Medicare claims lack the information necessary to disentangle whether particular acute interventions are associated with differing long-term outcomes. Finally, we demonstrated the association of severe sepsis with functioning under the treatment regimes in effect in a range of US hospitals at a particular point in time. New treatments for sepsis, or changes in life support or other hospital practices, may modify the long-term cognitive and functional effects of severe sepsis, even if these deficits are not an explicit target of care.

In summary, in this large nationally representative cohort of older adults, we found that the odds of acquiring moderate to severe cognitive impairment were 3.3 times as high following an episode of sepsis, with an additional mean increase of 1.5 new functional limitations per person among those with no or mild to moderate preexisting functional limitations. Thus, sepsis is often a sentinel event in the lives of older patients, initiating major and enduring cognitive and functional declines with lasting implications for patients’ independence, for their loved ones, and for the societal institutions charged with supporting them. Future research to identify mechanisms leading from sepsis to cognitive impairment and functional disability—and interventions to prevent or slow these accelerated declines—is especially important now given the aging of the population.

Author Contributions: Dr Iwashyna had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Iwashyna, Ely, Langa. Acquisition of data: Langa. Analysis and interpretation of data: Iwashyna, Ely, Smith, Langa.

Statistical analysis: Iwashyna, Ely, Langa. Drafting of the manuscript: Iwashyna, Ely, Langa. Critical revision of the manuscript for important intellectual content: Iwashyna, Ely, Smith, Langa. Financial Disclosures: None reported.

Administrative, technical, or material support: Iwashyna, Ely, Langa. Study supervision: Iwashyna, Ely, Langa.

Funding/Support: This work was supported by grants K08 HL091249, R01 AG020710, and R01 AG030155 from the National Institutes of Health; the Society of Critical Care Medicine’s 2010 Vision Grant; and by pilot support from grant UL1RR024986 from the Michigan Institute for Clinical and Health Research. Grant U01 AG09740 from the National Institute on Aging provided funding for the Health and Retirement Study, which is performed at the Institute for Social Research, University of Michigan. Dr Ely was supported...
by grant AG027472 from the National Institutes of Health, Veterac Affairs Merit Award, and by the Tennessee Valley Geriatric Research, Education and Clinical Center. Consultative support was provided by the Measurement Core of the Michigan Diabetes Center through grant P60-DK-20572 from the Na
tional Institute of Diabetes and Digestive and Kidney Disease.

Role of the Sponsor: The funders played no role in the design, interpretation, or decision to publish the analysis presented herein.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the po
sition or policy of the Department of Veterans Affairs or the US government.

Online-Only Material: The Methods appendix, eTables 1-9, and the eFigure are available at www
.jama.com.

Additional Contributions: We thank Mohamed Ka
beto, MS, Ryan McCammon, AB, Lili Deng, MD, MA, and Tish Shapiro, MA, all at the University of Michi
gan, for their expert programming; they were finan
cially compensated for their work. We further thank Robert Hyzj, MD, and Rodney Hayward, MD, of the University of Michigan for insightful critiques; they re
cieved no compensation for their work.

REFERENCES

ship between functional loss before hospital admis
1183.

2. Fried TR, Bradley EH, Williams CS, Tinetti ME. Func
tional disability and health care expenditures for older
persons. Arch Intern Med 2001;161(21):2602-
2607.

3. Langa KM, Chemew NE, Kabeto MU, et al. Na
tional estimates of the quantity and cost of informal
caregiving for the elderly with dementia. J Gerontol

4. Fried TR, Bradley EH, Towle VR, Allore H. Under
tstanding the treatment preferences of seriously ill patients. N Eng J Med 2002;346(14):1061-
1066.

5. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont
G, Carcillo J, Pinsky MR. Epidemiology of severe sep

1554.

9. Health and Retirement Study. Sample Sizes and Re

(11):1130-1139.

11. Fonda S, Herzog AR. Documentation of Physi
cal Functioning Measured in the Health and Retire
ment Study and the Asset and Health Dynamics Among

13. Welsh KA, Breiner JCS, Magruder-Hall KM. De
tection of dementia in the elderly using telephone screening of cognitive status. Neuropsychol Rehabil

14. Jorm AF. The Informant Questionnaire on cog

ment in the United States: is there evidence of a com

.alz.org/national/documents/report_earlyonset_full.

17. Langa KM, Plassman BL, Wallace RB, et al. The Aging, Demographics, and Memory Study: study de

18. Oostedal MB, Fisher GF, Herzog AR Documen

19. Allison PD. Fixed Effects Regression Models. Thou
sand Oaks: Sage; 2009.

22. Yaffe K, Fox P, Newcomer R, et al. Patient and caregiver characteristics and nursing home place
ment in patients with dementia. JAMA. 2002;287

23. Mehta KM, Yaffe K, Lang KM, Sands L, Wholley MA, Covinsky KE. Additive effects of cognitive func

3053.

29. Needham DM. Mobilizing patients in the intes
native care unit: improving neuromuscular weakness and physical function. JAMA. 2008;300(14):1685-
1690.

servative fluid strategy is associated with neurocog

34. Sprung CL, Peduzzi PN, Shatney CH, et al; The Veterans Administration Systemic Sepsis Coopera
tive Study Group. Impact of encephalopathy on mor

36. Iwashyna TJ. Survivorship will be the defining chal

37. McConnell S, Stuart EA, Devaney B. The trunca

cline and recovery of activities of daily living in hos

39. Boyd CM, Xue QL, Guralnik JM, Fried LP. Hos
terization and development of dependence in ac

COGNITIVE IMPAIRMENT, DISABILITY, AND SEVERE SEPSIS

2010 American Medical Association. All rights reserved.