Management strategies for patients with pulmonary hypertension in the intensive care unit*

Roham T. Zamanian, MD; Francois Haddad, MD; Ramona L. Doyle, MD; Ann B. Weinacker, MD

LEARNING OBJECTIVES
On completion of this article, the reader should be able to:
1. Explain the pathophysiology of pulmonary hypertension.
2. Describe treatment modalities for pulmonary hypertension.
3. Use this information in the clinical setting.

Dr. Zamanian has disclosed that he is/was the recipient of grant/research funds from Entelligence-Actelion’s Young Investigators Program, is/was on the speakers’ bureau for Actelion, and was on the speakers’ bureau for Co-Therix, and Encysive. Dr. Doyle has disclosed that she is/was a consultant for Actelion, Encysive, and Gilead. Dr. Haddad has disclosed that he has no financial relationships with or interests in any commercial companies pertaining to this educational activity. Dr. Weinacker has disclosed that she was the recipient of grant/research funds from Lilly.

The authors have disclosed that sildenafil has not been approved by the U.S. Food and Drug Administration for use in the treatment of pulmonary hypertension in critically ill patients. Please consult product labeling for the approved usage of this drug or device.

Visit the Critical Care Medicine Web site (www.ccmjournal.org) for information on obtaining continuing medical education credit.

Objective: Pulmonary hypertension may be encountered in the intensive care unit in patients with critical illnesses such as acute respiratory distress syndrome, left ventricular dysfunction, and pulmonary embolism, as well as after cardiothoracic surgery. Pulmonary hypertension also may be encountered in patients with preexisting pulmonary vascular, lung, liver, or cardiac diseases. The intensive care unit management of patients can prove extremely challenging, particularly when they become hemodynamically unstable. The objective of this review is to discuss the pathogenesis and physiology of pulmonary hypertension and the utility of various diagnostic tools, and to provide recommendations regarding the use of vasopressors and pulmonary vasodilators in intensive care.

Data Sources and Extraction: We undertook a comprehensive review of the literature regarding the management of pulmonary hypertension in the setting of critical illness. We performed a MEDLINE search of articles published from January 1970 to March 2007. Medical subject headings and keywords searched and cross-referenced with each other were: pulmonary hypertension, vasopressor agents, therapies, critical illness, intensive care, right ventricular failure, mitral stenosis, prostacyclin, nitric oxide, sildenafil, dopamine, dobutamine, phenylephrine, isoproterenol, and vasopressin. Both human and animal studies related to pulmonary hypertension were reviewed.

Conclusions: Pulmonary hypertension presents a particular challenge in critically ill patients, because typical therapies such as volume resuscitation and mechanical ventilation may worsen hemodynamics in patients with pulmonary hypertension and right ventricular failure. Patients with decompen-sated pulmonary hypertension, including those with pulmonary hypertension associated with cardiothoracic surgery, require therapy for right ventricu-lar failure. Very few human studies have addressed the use of vasopressors and pulmonary vasodilators in these patients, but the use of dobutamine, milrinone, inhaled nitric oxide, and intravenous prostacyclin have the greatest support in the literature. Treatment of pulmonary hypertension resulting from critical illness or chronic lung diseases should address the primary cause of hemodynamic deterioration, and pulmonary vasodilators usually are not necessary. (Crit Care Med 2007; 35:2037–2050)

Key Words: pulmonary hypertension; intensive care unit; vasopressor agents; nitric oxide; prostacyclin; right ventricular failure; dobutamine

Pulmonary hypertension is commonly encountered in the intensive care unit (ICU). Although new therapies for pulmonary hypertension have emerged in recent years, the management of critically ill patients with hemodynamically significant pulmonary hypertension remains challenging. Patients with moderate to severe pulmonary hypertension can deteriorate rapidly and are unlikely to survive efforts at cardiopulmonary resuscitation (1). Appropriate therapy depends on identifying the underlying cause and hemodynamic effects of pulmonary hypertension. To reflect differences in pathophysiology, a revised World Health Organization classification of pulmonary

*See also p. 2210.

Assistant Professor of Medicine (RTZ), Clinical Instructor (FH), Pulmonary Hypertension Clinical Service, Associate Professor, Co-Director, Vera Moulton Wall Center for Pulmonary Vascular Disease (RLD), Associate Professor of Medicine (ABW), Division of Pulmonary

& Critical Care Medicine, Associate Chair for Clinical Affairs, Department of Medicine (ABW), Stanford University Medical Center, Stanford, CA. Supported, in part, by grants from Actelion (RZ, RLD) and United Therapeutics (RLD). Address requests for reprints to: Ann B. Weinacker, MD, 300 Pasteur Drive, S102, Stanford, CA 94305–5110. E-mail: annw@stanford.edu

Copyright © 2007 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins

DOI: 10.1097/01.CCM.0000280433.74246.9E

Crit Care Med 2007 Vol. 35, No. 9
hypertension (Table 1) has been adopted (2). The revised classification separates causes of pulmonary hypertension into those that primarily affect the pulmonary arterial tree (pulmonary arterial hypertension; PAH) or the pulmonary venous system, and those that affect the pulmonary vasculature because of alterations in lung structure or function. This new classification thus provides a framework to guide appropriate diagnosis and treatment of pulmonary hypertension in critically ill patients (2).

Pulmonary hypertension is defined as a systolic pulmonary artery pressure (PAP) of >35 mm Hg, or, alternatively, as a mean PAP of >25 mm Hg at rest or >30 mm Hg with exertion (2–4). Pulmonary hypertension in the ICU may be due to preexisting pulmonary vascular disease, lung disease, liver disease, or cardiac disease. Pulmonary hypertension also may be caused by critical illnesses such as acute respiratory distress syndrome (ARDS), acute left ventricular dysfunction, and pulmonary embolism, or may occur after cardiac or thoracic surgery. In this paper we review the diagnosis and treatment of critically ill patients with pulmonary hypertension of varying etiologies, and discuss strategies to treat hemodynamic instability.

### Table 1. Revised clinical classification of pulmonary hypertension (Venice 2003)

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Idiopathic (iPAH)</td>
</tr>
<tr>
<td>1.2.</td>
<td>Familial (FPAH)</td>
</tr>
<tr>
<td>1.3.</td>
<td>Associated with (APAH)</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>Collagen vascular disease</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>Congenital systemic-to-pulmonary shunts</td>
</tr>
<tr>
<td>1.3.3.</td>
<td>Portal hypertension</td>
</tr>
<tr>
<td>1.3.4.</td>
<td>HIV infection</td>
</tr>
<tr>
<td>1.3.5.</td>
<td>Drugs and toxins</td>
</tr>
<tr>
<td>1.3.6.</td>
<td>Other (thromboembolic disorders, glycogen storage disease, Gaucher disease, hereditary hemorrhagic telangiectasia, hemoglobinopathies, myeloproliferative disorders, splenectomy)</td>
</tr>
<tr>
<td>1.4.</td>
<td>Associated with significant venous or capillary involvement</td>
</tr>
<tr>
<td>1.4.1.</td>
<td>Pulmonary veno-occlusive disease (PVOD)</td>
</tr>
<tr>
<td>1.4.2.</td>
<td>Pulmonary capillary hemangiomatosis (PCH)</td>
</tr>
<tr>
<td>1.5.</td>
<td>Persistent pulmonary hypertension of the newborn</td>
</tr>
<tr>
<td>2.</td>
<td>Pulmonary hypertension with left heart disease</td>
</tr>
<tr>
<td>2.1.</td>
<td>Left-sided atrial or ventricular heart disease</td>
</tr>
<tr>
<td>2.2.</td>
<td>Left-sided valvular heart disease</td>
</tr>
<tr>
<td>3.</td>
<td>Pulmonary hypertension associated with lung diseases and/or hypoxemia</td>
</tr>
<tr>
<td>3.1.</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>3.2.</td>
<td>Interstitial lung disease</td>
</tr>
<tr>
<td>3.3.</td>
<td>Sleep-disordered breathing</td>
</tr>
<tr>
<td>3.4.</td>
<td>Alveolar hypoventilation disorders</td>
</tr>
<tr>
<td>3.5.</td>
<td>Chronic exposure to high altitude</td>
</tr>
<tr>
<td>3.6.</td>
<td>Developmental abnormalities</td>
</tr>
<tr>
<td>4.</td>
<td>Pulmonary hypertension due to chronic thrombotic and/or embolic disease</td>
</tr>
<tr>
<td>4.1.</td>
<td>Thromboembolic obstruction of proximal pulmonary arteries</td>
</tr>
<tr>
<td>4.2.</td>
<td>Thromboembolic obstruction of distal pulmonary arteries</td>
</tr>
<tr>
<td>4.3.</td>
<td>Non-thrombotic pulmonary embolism (tumor, parasites, foreign material)</td>
</tr>
<tr>
<td>5.</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>5.1.</td>
<td>Sarcoidosis, histiocytosis X, lymphangiomatosis, compression of pulmonary vessels (adenopathy, tumor, fibrosing mediastinitis)</td>
</tr>
</tbody>
</table>

HIV, human immunodeficiency virus.


### PATHOGENESIS AND PHYSIOLOGY

Pulmonary hypertension encompasses a spectrum of pathologies best characterized by their anatomical location: precapillary arteries and arterioles, alveoli and capillary beds, and postcapillary pulmonary veins and venules. Idiopathic pulmonary arterial hypertension is the result of increased vasoconstriction, pulmonary vascular remodeling, and in situ thrombosis provoked by endothelial dysfunction, smooth muscle proliferation, and neointimal formation (3, 5, 6) in the precapillary arteries and arterioles. The more common causes of PAH (group 1 in Table 1) have similar histopathologic changes. Hypoxemic lung diseases such as interstitial lung disease and chronic obstructive pulmonary disease may cause pulmonary hypertension as the result of vascular destruction as well as alveolar hypoxemia. In acute lung injury, both hypoxemia and the accumulation of intravascular fibrin and cellular debris contribute to subsequent vascular obliteration and pulmonary hypertension (7).

Pulmonary venous hypertension is typically a result of left ventricular diastolic dysfunction, valvular heart disease, or pulmonary venous disorders.

Multiple molecular pathways have been implicated in the pathogenesis of PAH. Nitric oxide and prostacyclin are endogenous vasodilators produced in the pulmonary vascular endothelium, and in many types of pulmonary hypertension their production is impaired (7, 8). Endothelin-1 is an endogenous vasoconstrictor peptide secreted by the vascular endothelium (7), and is implicated in pulmonary vasoconstriction and vascular smooth muscle proliferation (7). Endothelin-1 is excessively abundant in patients with idiopathic PAH, PAH associated with congenital heart disease, and pulmonary hypertension associated with thromboembolic disease (8–10). Dysfunction in the nitric oxide, prostacyclin, endothelin-1, and other pathways produces an imbalance between vasodilation and vasoconstriction, and between apoptosis and proliferation. The rationale for therapy for PAH is thus based on re-establishing the balance in key molecular pathways by increasing available nitric oxide and prostacyclin, or reducing the effects of endothelin-1 (Fig. 1).

The neurotransmitter serotonin and the serotonin receptor transporter also have been implicated in the development of PAH. Some studies have linked high serotonin levels to PAH (11, 12). Furthermore, appetite suppressants such as dexfenfluramine and aminorex that elevate serotonin levels are associated with a significantly increased incidence of PAH (13). Recent debate has focused on the potential role of serotonin receptor transporter polymorphism as a genetic risk factor for developing PAH (14).

The consequence of these aberrant cellular and molecular pathways is an increase in pulmonary vascular resistance (PVR) and impedance of flow, causing right ventricular strain that impairs filling and causes right ventricular volume and pressure overload (Fig. 2). The right ventricle then dilates and eventually hypertrophy develops, encroaching on the
Increased right ventricular wall stress results in right ventricular ischemia. Tricuspid regurgitation develops as a result of right ventricular dysfunction and portends a poor prognosis (15). Regardless of the underlying cause of pulmonary hypertension, the final common pathway for hemodynamic deterioration and death is right ventricular failure, which is the most challenging aspect of patient management. Therapy is thus aimed at acutely relieving right ventricular overload by decreasing PVR and reversing right ventricular failure with pulmonary vasodilators and inotropes.

**RIGHT VENTRICULAR DYSFUNCTION IN PULMONARY HYPERTENSION**

Compared with the left ventricle, the right ventricle demonstrates a heightened sensitivity to changes in afterload. Right ventricular stroke volume decreases proportionately to acute increases in afterload. In addition, a normal right ventricle cannot acutely increase the mean PAP to more than 40 mm Hg (16). Right ventricular systolic dysfunction, severe tricuspid regurgitation, arrhythmias, and left ventricular dysfunction caused by ventricular interdependence may contribute to low cardiac output and hypotension in patients with pulmonary hypertension (Fig. 2). Ventricular interdependence refers to the concept that the size, shape, and compliance of one ventricle may affect the size, shape, and pressure–volume relationship of the other ventricle. In the presence of right ventricular volume or pressure overload, the interventricular septum shifts toward the left and limits left ventricular filling and output. This has direct implications for the management of patients with pulmonary hypertension and acute right ventricular failure. In fact, the challenge is to find the optimal preload to avoid the detrimental effects of ventricular interdependence (17). Another consequence of right ventricular failure in the setting of pulmonary hypertension is the opening of the foramen ovale and development of right to left shunting that can cause or aggravate hypoxemia.

Neurohormonal activation is important in acute and chronic right-sided failure. Atrial and B-type natriuretic peptide levels recently have been described to be elevated in patients with right ventricular failure and pulmonary hypertension (18), and are not only markers for pulmonary hypertension but appear to be important in the pathogenesis of the disease. Atrial and B-type natriuretic peptides are cardiac peptides that not only promote diuresis but also inhibit pulmonary vasoconstriction.
(including hypoxic pulmonary vasoconstriction) by raising cyclic guanosine monophosphate levels, and patients with pulmonary hypertension have been demonstrated to have decreased responsiveness to these peptides (18, 19).

**DIAGNOSTIC TOOLS IN THE ICU**

Pulmonary hypertension may first be recognized when an echocardiogram is obtained or a pulmonary artery catheter is placed for hemodynamic monitoring. Determining the cause and significance of the elevated PAP then dictates appropriate therapy. A comprehensive work-up is then necessary to determine the cause and hemodynamic consequence of pulmonary hypertension. Physical, laboratory, and radiologic examinations can help distinguish among three main causes of pulmonary hypertension in the ICU (preexisting pulmonary vascular disease, acute or chronic cardiovascular disease, and acute or chronic pulmonary disease), or other causes such as human immunodeficiency virus or liver disease.

Physical examination of patients with right ventricular failure classically reveals an elevated jugular venous pulse with a large v wave. An early finding is a prominent pulmonic component of the second heart sound. Other findings may include a palpable right ventricular heave, and the holosystolic blowing murmur of tricuspid regurgitation murmur along the left lower sternal border (20). If perceptible, accentuation of this murmur during inspiration (Carvallo’s sign) distinguishes it from the murmurs of mitral regurgitation and aortic stenosis. There may be tender, even pulsatile hepatomegaly, and ascites or peripheral edema. The lung exam may suggest underlying lung disease. Patients with isolated right ventricular failure, however, do not exhibit pulmonary edema. The finding of pulmonary edema suggests left ventricular dysfunction, pulmonary venous hypertension, or a noncardiac cause such as ARDS.

Laboratory evaluation is undertaken to identify reversible causes of pulmonary hypertension. In the ICU however, many laboratory derangements result from critical illness itself. Nonetheless, clues may be provided as to the underlying cause of pulmonary hypertension by polycythemia (suggesting chronic hypoxemia), thyroid or liver function abnormalities, or serologic markers of connective tissue disease (scleroderma and lupus), hepatitis, or human immunodeficiency virus.

Cardiac enzymes may be elevated in patients with right ventricular overdistention and ischemia. Troponin I leak due to acute right ventricular strain from pulmonary embolism has been described (21), and may predict mortality (22). B-type natriuretic peptide (BNP) is a prognostic indicator in patients with severe pulmonary hypertension (23). The utility of measuring BNP in critically ill patients with pulmonary hypertension is unclear, however. BNP levels may be elevated in critically ill surgical patients (24), patients with shock (25), or critically ill patients with cardiac dysfunction of any cause (26, 27). Although the diagnostic utility of BNP in renal insufficiency has been thought to be limited, recent literature (28) suggests that a plasma BNP of ≥150 pg/mL is a reliable marker of left ventricular overload and heart failure in patients with chronic renal failure. In patients with renal failure, a relative reduction in BNP after hemodialysis can be a valid indicator of improved left ventricular wall tension (29), but the utility of its measurement in patients with concomitant right ventricular dysfunction and critical illness remains questionable (30).

Electrocardiography is an insensive measure of right ventricular hypertrophy, but the findings of right axis deviation, R/S wave > 1 in V1 with R wave > 0.5 mV, and P pulmonale are more than 90% specific (31). Electrocardiography changes reflecting right ventricular abnormalities are significant predictors of mortality in patients with idiopathic PAH (32). Although these electrocardiography findings have not been used for diagnosis in the ICU, they provide evidence of advanced disease that may be difficult to manage in critically ill patients. Electrocardiography scoring systems that correlate with the extent of perfusion defects in acute pulmonary embolism also have been developed (33), and may prove useful in the future to diagnose and stratify patients with pulmonary hypertension and right ventricular failure.

Plain chest radiography is of limited utility in diagnosing pulmonary hypertension in the ICU, but may help define an underlying cause. Typical findings of right ventricular hypertrophy, right atrial enlargement, and obscuring of the aortopulmonary window by enlarged pulmonary arteries are less obvious on portable radiographs. Nonetheless, diffuse severe pulmonary parenchymal abnormalities may suggest an underlying cause of pulmonary hypertension. Computerized tomographic angiography, ventilation-perfusion scanning, or pulmonary angiography may identify thromboembolic disease as the cause of pulmonary hypertension (4).

Echocardiography is useful for diagnosing and determining the degree and significance of pulmonary hypertension (4). Echocardiography can noninvasively estimate right atrial and pulmonary arterial pressures, determine the degree of right ventricular dysfunction, and reveal potential causes of pulmonary hypertension such as left ventricular systolic or diastolic dysfunction, mitral stenosis or regurgitation, and certain intracardiac shunts. Although images may be suboptimal in critically ill patients because of limitations of patient positioning, interference by dressings, or positive pressure ventilation, a transthoracic echocardiogram should be obtained as a screening test (4). Echocardiographic signs of significant pulmonary hypertension include right ventricular dilation and hypertrophy, septal bowing into the left ventricle during late systole to early diastole (D-shaped left ventricle), right ventricular hypokinesis, tricuspid regurgitation, right atrial enlargement, and a dilated inferior vena cava (3, 34, 35). Increased right ventricular size and outflow impedance combined with reduced ejection fraction have been described in acute cor pulmonale. Demonstration of septal dyskinesia and right ventricular enlargement indicate right ventricular systolic and diastolic overload, respectively (34, 35).

In acute pulmonary embolism, McConnell and colleagues (36) also described a specific pattern of right ventricular dysfunction characterized by a severe hypokinesia of the right ventricular mid-free wall, with normal contractions of the apical segment. Echocardiographic predictors of poor outcomes in PAH include right atrial enlargement, septal bowing, and the development of a pericardial effusion (37).

Transthoracic echocardiography may be more sensitive than transthoracic echocardiography, especially in acute disease such as pulmonary embolism (38), and may provide clearer and more accurate information in critically ill patients (39).
Right heart or pulmonary artery (PA) catheterization is the gold standard for the diagnosis of pulmonary hypertension (3). In patients with significant PAH, the most useful information is obtained in the cardiac catheterization laboratory. Precise analysis of mixed venous oxygen saturations during insertion and passage of the PA catheter through the cardiac chambers can allow diagnosis of intracardiac shunts. A pulmonary capillary wedge pressure less than 15 mm Hg helps rule out left ventricular and pulmonary venous diseases (3). Observation of real-time mean PA pressure (mPAP), cardiac output, and PVR allows immediate evaluation of response to vasodilator therapy. Although the definition of a substantial response to therapy remains controversial, the most recent definition requires a reduction in mPAP of at least 10 mm Hg to $\leq 40$ mm Hg with an increased or unchanged cardiac output (40). Because increased pulmonary arterial blood flow can elevate mPAP, documentation of the response to therapy also should include the change in PVR. Regardless of the parameters used, the presence of vasoreactivity may suggest a better prognosis and ultimately can help determine medical therapy (41).

Despite current controversies regarding the utility of PA catheters in the ICU, hemodynamic data are valuable in the care of critically ill patients with pulmonary hypertension. In this setting, technical and interpretive limitations must be recognized. Severe tricuspid regurgitation and elevated PAP often make placing a PA catheter challenging, and may necessitate the use of fluoroscopy. Accurate determination of cardiac output by thermodilution may be limited in patients with tricuspid regurgitation or low cardiac output (42). The Fick method may be more accurate, but requires determination of oxygen consumption, which is challenging in critically ill patients. The superiority of thermodilution vs. the Fick method in critically ill patients remains controversial (43).

Complications of PA catheterization are particularly dangerous in patients with pulmonary hypertension and right ventricular strain. Tachyarrhythmias have potentially life-threatening consequences of decreased stroke volume due to shortened filling time, or deterioration into fatal arrhythmias. Obtaining a pulmonary capillary wedge pressure also may be difficult in patients with markedly elevated pulmonary pressures.

**MANAGEMENT OF PULMONARY HYPERTENSION IN THE ICU**

**Overview**

When managing a critically ill patient with pulmonary hypertension in the ICU, primary considerations include the diagnosis and treatment of specific causes of pulmonary hypertension, the application of PAH-specific therapies only when appropriate, and determination of the degree of right ventricular failure and its appropriate therapy (Fig. 3).

---

**Figure 3.** Suggested evaluation and treatment algorithm for pulmonary hypertension in the intensive care unit (ICU). **WHO**, World Health Organization; **PH**, pulmonary hypertension; **RV**, right ventricle; **LV**, left ventricle; **PAH**, pulmonary arterial hypertension; **BNP**, B-type natriuretic peptide; **INO**, inhaled nitric oxide; **CVP**, central venous pressure; **$\text{SVO}_{2}$**, mixed venous oxygen saturation; **CO**, cardiac output; **PEEP**, positive end-expiratory pressure; **SVR**, systemic vascular resistance. *Bosentan initiation requires normal liver transaminases and may be associated with fluid retention and necessitate further diuresis.* **Sildenafil** is contraindicated in concomitant use with nitroglycerin because of its hypotensive potential.
The revised classification of pulmonary hypertension (Table 1) provides a framework for treatment of pulmonary hypertension patients in the ICU. Patients with PAH (World Health Organization group 1) can benefit from prostacyclin, sildenafil, or from long-term bosentan therapy, depending on the severity of their illness and functional classification. Patients with decompensated PAH often require an aggressive combination of therapies for right ventricular failure. In patients with pulmonary venous hypertension (World Health Organization group 2), optimization of left-sided heart failure and valvular disease management is the most important facet of therapy. In patients with pulmonary hypertension secondary to various causes of parenchymal lung disease and/or hypoxemia, primary therapy consists of treating the underlying cause. Patients with pulmonary hypertension resulting from critical illness (Table 2) or chronic lung disease (44) are less likely to suffer from significant underlying pulmonal vascular disease, and their treatment should address the primary cause of their hemodynamic deterioration, such as sepsis or left ventricular dysfunction. These patients usually do not require treatment with pulmonary vasodilators. In patients with acute thromboembolic disease, therapy consists of anticoagulation (45), thrombolysis, or thrombectomy (see section on pulmonary embolism).

Aggressive fluid balance management is critical in patients with decompensated pulmonary hypertension and right ventricular failure. Hypovolemia and hypervolemia both can lead to suboptimal preload and decreased cardiac output. Maintenance of sinus rhythm and atrioventricular synchrony is especially important in the presence of right ventricular dysfunction. For example, atrial fibrillation or complete atrioventricular block are poorly tolerated in patients with acute pulmonary emboli or in chronic right ventricular failure (46). In the hemodynamically unstable patient, initiation of inotropic therapy may be necessary. Dobutamine is the inotrope that has been the most extensively studied in the context of acute right-sided failure (see below), but other agents may be beneficial. In refractory right ventricular failure, early consideration of atrial septostomy (see below), heart or heart-lung transplantation, or right ventricular assist-device placement may be life-saving (47).

Effects of Mechanical Ventilation

In patients with pulmonary hypertension and respiratory failure, mechanical ventilation may have untoward hemodynamic effects. Increases in lung volume and decreases in functional residual capacity can increase PVR and right ventricular afterload (48). In patients with normal right ventricular function, transient increases in PVR are inconsequential. However, in patients with pre-existing or impending right ventricular failure, lung hyperinflation and either inadequate or excessive positive end-expiratory pressure can fatally reduce cardiac output (48).

In a study of seven mechanically ventilated patients with acute lung injury and ARDS, six developed significant tricuspid regurgitation, elevated PAP, and increased pulmonary capillary wedge pressure during incremental increases in positive end-expiratory pressure from 5 mm Hg to 20 mm Hg (49). The elevated PAP correlated directly with increased right atrial pressure and PVR. Other investigators demonstrated increased right ventricular outflow impedance in mechanically ventilated patients as tidal volume was progressively increased, an effect that was ameliorated with the application of low levels of positive end-expiratory pressure between 3 cm H2O and 8 cm H2O (50). These data suggest that the optimal ventilator management of patients with pulmonary hypertension may be with low tidal volumes and relatively low positive end-expiratory pressure. This strategy of low tidal volume ventilation is similar to the strategy used to ventilate patients with ARDS, but care should be taken to avoid permissive hypercapnia, which may have untoward hemodynamic effects (51). A study of 18 patients after coronary artery bypass graft surgery demonstrated that hypercapnia increased PVR by 54% and mPAP by approximately 30% (52). Whether these effects are mediated by hypercapnia itself or by acidosis remains unclear (53).

Pharmacologic Therapy of Pulmonary Hypertension

Vasopressors and Inotropes. Hemodynamic goals in patients with right ventricular failure due to pulmonary hypertension are to reduce PVR, augment cardiac output, and resolve systemic hypertension while avoiding tachyarrhythmias. Most traditional vasopressors and inotropes are suboptimal in reducing pulmonary vascular resistance. Only a few small human studies address hemodynamic support in patients with PAH, right ventricular failure, and hypotension, and most of the common vasopressors and inotropes have not been studied. Animal studies predominately employ models of acute pulmonary hypertension and right ventricular failure, and may not be applicable to patients with longstanding PAH and altered right ventricular mechanics. The use of vasopressors and inotropes in patients with PAH must therefore be guided by knowledge of their effects on PVR and cardiac output, and must be individualized based on patient response. In many cases, combination therapy is required. The following discussion attempts to list agents in order of usefulness in treating pulmonary hypertension and associated right ventricular failure.

Dobutamine. Dobutamine is an inotrope that acts primarily through β1-adrenergic receptors to augment myocardial contractility and reduce left ventricular afterload (54). In animal models of acute pulmonary hypertension,
dopamine in doses up to 5 μg/kg per min significantly decreased PVR while slightly increasing cardiac output (55, 56). However, at doses of 5–10 μg/kg per min, dobutamine caused significant tachycardia without improving pulmonary vascular resistance. In a canine model of acute right ventricular failure, dobutamine was superior to norepinephrine in promoting right ventricular-pulmonary artery coupling, a process that reflects improved right ventricular function by optimizing pulmonary vasodilation (55), probably because of superior inotropic properties (57). When combined with inhaled nitric oxide in both animal and human studies of acute and chronic pulmonary hypertension, dobutamine improved cardiac index, decreased PVR indices (56, 58), and significantly increased PaO₂/FIO₂ (58).

These studies suggest that dobutamine doses in both acute and chronic pulmonary hypertension should be maintained at less than 5 μg/kg per min, and should be combined with pulmonary vasodilators such as inhaled nitric oxide when possible. However, dobutamine may cause systemic hypotension in some patients because of its peripheral β-adrenergic effects and may necessitate the use of norepinephrine or a peripheral vasconstrictor.

Norepinephrine. Norepinephrine stimulates α₁- and β₁-adrenergic receptors. When used in animal and human studies of both acute and chronic pulmonary hypertension, it has been shown to increase mPAP and PVR (59, 60). However, unlike phenylephrine, norepinephrine maintained or improved cardiac output in patients with pulmonary hypertension. Selective infusion of norepinephrine into the left atrium, combined with prostaglandin E₁ administration into the right atrium, has been useful in weaning patients with acute pulmonary hypertension from cardiopulmonary bypass (61). There are no data that such selective infusion is beneficial in other patient populations. Unlike dobutamine, norepinephrine has vasoconstrictive effects that are much more pronounced than the chronotropic and inotropic effects (55). Although norepinephrine may be useful in hypotensive patients and cause less tachycardia, dobutamine remains a superior choice in the setting of pulmonary hypertension and right ventricular failure.

Dopamine. Dopamine is an adrenergic and dopaminergic agonist that increases blood pressure and cardiac output (62). One animal study suggests that the use of dopamine in acute embolic pulmonary hypertension augments cardiac output and reduces PVR (63). A human study, however, failed to demonstrate a consistent reduction in PVR (64). In addition, the augmented cardiac output comes at the price of significant tachycardia that may decrease left ventricular preload and worsen demand ischemia.

Phenylephrine. Phenylephrine is an α₁-adrenergic agent and a powerful arte- riolar vasconstrictor that can improve right ventricular coronary perfusion (59). However, phenylephrine increases mPAP and PVR and decreases cardiac output, thus worsening right ventricular pressure overload in patients with chronic pulmonary hypertension (59, 65). Phenylephrine also may cause reflex bradycardia (66), which may be detrimental to right ventricular hemodynamics. In patients with significant pulmonary hypertension, phenylephrine usually should be avoided.

Isoproterenol. Isoproterenol is primarily a β₁- and β₂-adrenergic agonist that has historically been used to treat pulmonary hypertension during surgery. Because it is a stronger chronotropic agent than dobutamine, the use of isoproterenol is associated with significant tachyarrhythmias. Although it improves cardiac output and PVR (60), the utility of isoproterenol in animal models of acute pulmonary hypertension has been limited by the induction of arrhythmias and the lack of effect on PAP (67).

Epinephrine. Although commonly used to improve cardiac output and increase systemic vascular resistance in hypotensive patients in the ICU, epinephrine, a potent α- and β-adrenergic agent, has not been studied in the setting of pulmonary hypertension.

Vasopressin. Vasopressin is a weak nonadrenergic vasopressor that is believed to be a systemic vasoconstrictor and a selective pulmonary vasodilator (68–70). However, in an animal model of acute pulmonary hypertension, vasopressin at an average dose of 1.16 units/kg per hr increased mPAP and PVR and decreased cardiac output (71). This suggests that vasopressin in high doses should be avoided in patients with pulmonary hypertension. On the other hand, recent data suggest that the optimal dose of vasopressin in shock is much lower than used in the aforementioned study (72). Whether low-dose vasopressin is useful in the management of pulmonary hypertension in the ICU requires further investigation.

Pulmonary Vasodilators

Pulmonary vasodilators can be classified into two main categories: those that increase production of cyclic guanosine monophosphate and cyclic adenosine monophosphate, such as nitric oxide and prostanoids, respectively; and those that decrease the breakdown of cyclic guanosine monophosphate, such as sildenafil and zafirlukast (5, 6), and of cyclic adenosine monophosphate, such as milrinone.

Nitric Oxide. Nitric oxide is a potent vasodilator that, when inhaled, dilates pulmonary vasculature in ventilated lung units, thereby improving oxygenation, reverting hypoxic pulmonary vasoconstriction, and reducing PAP. Nitric oxide is quickly inactivated by reaction with hemoglobin in the pulmonary capillaries, and has no systemic vasodilatory effects. Inhaled nitric oxide has been studied in pulmonary hypertension of various etiologies (73–76). Several studies have focused on inhaled nitric oxide therapy in adults with pulmonary hypertension and ARDS (73, 77, 78). Although ARDS patients without sepsis initially improve oxygenation with inhaled nitric oxide, there is no evidence that outcomes are improved (79). In chronic PAH, inhaled nitric oxide significantly decreases mPAP and PVR without affecting systemic vascular resistance or cardiac output (58, 80). Of 26 patients diagnosed in an ICU with acute right heart syndrome, 14 had significant hemodynamic improvement when treated with a mean concentration of 35 ppm of inhaled nitric oxide. In these patients there was a 38% reduction in PVR, 36% increase in CO, and a 28% increase in PaO₂/FIO₂ (81).

The use of nitric oxide is not without potential problems, however. Although uncommon, the development of methemoglobinemia may limit its use, especially with prolonged administration at higher concentrations (82). Also, the interaction of nitric oxide and high concentrations of oxygen produces NO₂, a significant oxidant (83). Abrupt withdrawal of nitric oxide has been associated with rebound pulmonary hypertension and hemodynamic collapse in up to 48% of patients evaluated (81, 84). In spite of its limitations, inhaled nitric oxide is a useful agent to treat pulmonary hypertension, particularly in combination with...
other agents such as dobutamine or milrinone (see below).

Prostaglandins. Early studies of intravenous prostaglandin E1 and proscystaclyn (or epoprostenol) in an animal model of acute embolic pulmonary hypertension showed significant reductions in PVR and mPAP, as well as augmentation of cardiac output (80). Prostaglandin E1 and proscystaclyn were more effective than isoproterenol and nifedipine, with nearly 40% reduction in PVR and approximately 35% improvement in cardiac output. More recent studies have demonstrated the efficacy of both inhaled and intravenous prostacyclins (85–88). In a retrospective study of 33 ICU patients with hypoxemia and pulmonary hypertension from cardiac and noncardiac causes, inhaled proscystaclyn improved mPAP and hypoxemia (89). Other studies and case reports have demonstrated the utility of inhaled prostacyclin and of the prostacyclin analog, iloprost, in reducing PAP and improving cardiac output (90–93), although prospective studies in critically ill patients with pulmonary hypertension are lacking. Subcutaneous or intravenous treprostinil, another prostacyclin analog, is also an effective treatment for pulmonary hypertension (6), but its long half-life (3–4 hrs) makes it less appropriate in hemodynamically unstable patients in the ICU.

In patients with PAH and right ventricular failure, chronic therapy with intravenous epoprostenol may be lifesaving. Epoprostenol has an elimination half-life of 3–6 mins and is typically started at a dose of 1–2 ng/kg per min, titrated upward at a rate of 0.5–1.0 ng/kg per min at intervals of 15–30 mins or more. An increase in cardiac output with a decrease in PAP and PVR is considered a favorable response.

The use of epoprostenol to reduce PA pressures acutely is limited by dose-dependent systemic side effects (88), particularly systemic hypotension. In conscious patients, headache, nausea, vomiting, and diarrhea also may limit rapid titration of epoprostenol. In patients treated chronically with epoprostenol, abrupt discontinuation of the infusion may cause severe rebound pulmonary hypertension and death within minutes (40).

Milrinone. Milrinone is a selective phosphodiesterase-3 inhibitor with inotropic and vasodilatory effects. In animal models of both acute and chronic pulmonary hypertension, milrinone significantly reduced PVR and improved right ventricular function (94, 95). In combination with inhaled nitric oxide, milrinone produces selective and additive pulmonary vasodilatation in pediatric patients after repair of congenital heart defects (96), and after cardiac surgery in animal studies (94). However, compared with zaprinast, a selective phosphodiesterase-5 inhibitor, milrinone has inferior pulmonary vasodilatory effects and more pronounced lowering of systemic arterial pressures (97). Thus, based on animal data and limited human data, selective phosphodiesterase-5 inhibition may be more beneficial than milrinone. Milrinone may have some utility in the treatment of hemodynamic instability in patients with pulmonary hypertension, although systemic hypotension often limits its use. Further studies are needed to verify the effects of milrinone in patients with pulmonary hypertension.

Sildenafil. Sildenafil is a specific phosphodiesterase-5 inhibitor with acute and chronic hemodynamic effects in patients with pulmonary hypertension (98–100), and recently has been approved for the treatment of PAH. However, there are only case reports or small case series describing its use in critically ill patients. A retrospective case review of eight adults with pulmonary hypertension after mitral valve repair or placement of a left ventricular assist device showed that sildenafil significantly reduced mPAP and reduced PVR with only a minimal drop in mean arterial pressure, thus facilitating weaning of inhaled and intravenous pulmonary vasodilators (101).

In stable patients, sildenafil alone or in combination with inhaled nitric oxide or epoprostenol reduces mPAP and PVR and increases cardiac output (102, 103). In patients with idiopathic PAH, sildenafil also can significantly improve cardiac output (100). Furthermore, limited human and animal data suggest that sildenafil and zaprinast may augment and maintain the effects of inhaled nitric oxide (98, 104–108) and iloprost (109) and minimize rebound pulmonary hypertension after withdrawal of these agents (110, 111). Additionally, some authors speculate that sildenafil may improve pulmonary hemodynamics and myocardial perfusion after coronary artery bypass graft surgery (112).

The hemodynamic effects of sildenafil start within 15 mins of administration and last up to several hours, although peak hemodynamic effects are seen within 30–60 mins. The relatively rapid onset of action, its diminution during 3–4 hrs, and the accompanying systemic hypotension suggest caution in critically ill patients. Sildenafil is contraindicated in patients receiving nitrates because of the potential for severe systemic hypotension.

Nesiritide. Recombinant human BNP (nesiritide) is a recently developed drug that increases cyclic guanosine monophosphate and dilates vascular smooth muscle. Its vasodilatory effect reduces right and left ventricular preload and may benefit patients with pulmonary hypertension resulting from biventricular failure (113). In a recent small study of patients with PAH (19), BNP infusion alone did not significantly improve pulmonary hemodynamics, but was safe and augmented the vasodilatory effects of sildenafil. However, others have shown that the reduction of systemic vascular resistance by nesiritide may cause detrimental systemic hypotension in patients with PAH and isolated right ventricular failure (114). Currently, therefore, the use of nesiritide should be limited to patients with biventricular failure who are not hypotensive.

Miscellaneous Therapy

Oxygen. Oxygen inhalation has been shown to reduce PA pressure and improve cardiac output in patients with pulmonary hypertension, regardless of the underlying cause (115). In addition, hypoxic pulmonary vasoconstriction may contribute to pulmonary hypertension in critically ill patients (116). Thus, supplemental oxygen should not be overlooked as a key component of pulmonary hypertension therapy in the ICU.

Diuretics. Diuretics have long been conventional therapy for pulmonary hypertension, whether caused by pulmonary vascular disease or left ventricular failure. Although human studies of diuretic use in pulmonary hypertension are lacking, there is evidence in the setting of exercise-induced pulmonary hypertension in race horses (117). The goal of diuretic use is to decrease volume load on the distended, failing right ventricle in advanced pulmonary hypertension without compromising preload. Optimization of diuresis in this setting is complex and should be adjusted according to hemodynamic response.

Digoxin. The use of digoxin in patients with pulmonary hypertension and right ventricular dysfunction is controversial. In a study of the short-term effects of
Atrial Septostomy. The observations of improved survival patients with pulmonary hypertension and a patent foramen ovale (122), and patients with congenital heart diseases and Eisenmenger’s physiology (123, 124), suggested that creation of an atrial septal shunt would improve survival in patients with pulmonary hypertension. Since the first palliative atrial septostomy in 1983, several studies have evaluated atrial septostomy for pulmonary hypertension (125, 126), or as a bridge to transplantation (127). Still controversial in the nonurgent setting, atrial septostomy has a very high associated morbidity and mortality in critically ill patients with severe right ventricular failure (125–127). It should not be performed in patients with mean right atrial pressures of >20 mm Hg, significant hypoxemia, and a PVR index >4400 dynes sec/cm² per m² (47, 127).

MISCELLANEOUS CAUSES OF PULMONARY HYPERTENSION

Some causes of pulmonary hypertension and hemodynamic instability encountered in the ICU require urgent therapy of the underlying disorder. Even in these cases, the aforementioned drugs are sometimes useful in the short term.

Pulmonary Embolism

Acute, massive pulmonary embolism may cause acute pulmonary hypertension and right ventricular failure (81) requiring inotropic support. In a large multicenter study of pulmonary embolism, hospital mortality in patients presenting with hemodynamic instability was 31% (128). Therapy for acute massive pulmonary embolism with associated hemodynamic instability or shock thus aims to urgently relieve mechanical obstruction of the pulmonary vasculature caused by thrombus and intense vasoconstriction. When pulmonary embolism is associated with hemodynamic instability, urgent pharmacologic thrombolysis is recommended unless contraindicated, and is associated with more rapid resolution of thrombus than anticoagulation alone, although the mortality benefit is unclear (119). If thrombolysis fails or is contraindicated, surgical embolectomy is indicated in centers where an experienced cardiac surgical team is available (119). Percutaneous mechanical clot disruption also has been reported, but data comparing outcomes to pharmacologic thrombolysis or surgical thrombectomy are limited (129, 130). In submassive pulmonary embolism associated with echocardiographic evidence of right ventricular strain but without hemodynamic instability, thrombolysis is recommended by some, although this remains controversial (131).

Data supporting specific pharmacologic therapy of acute pulmonary embolism with right ventricular failure are sparse. Animal studies suggest that nor- epinephrine may be useful to treat hypertension in acute pulmonary embolism (132, 133), but data in humans are lacking. Inhaled nitric oxide also may improve hemodynamics in acute pulmonary embolism (134) and is being used increasingly in many centers.

Mitrail Stenosis

Mitrail stenosis increases left atrial and pulmonary venous pressures, and may eventually lead to pulmonary hypertension. Diuretics are the mainstay of medical management and can improve cardiac output. Rate control also is crucial, and may be achieved with diltiazem. Concomitant atrial fibrillation and right ventricular failure may be treated with β-blockers. Although inhaled nitric oxide can be useful for short-term management (135), valvuloplasty or valve replacement are the definitive therapies.

Chronic Liver Disease

Portopulmonary hypertension is an uncommon cause of pulmonary hypertension in the ICU, and is a manifestation of chronic liver disease. Acute liver failure rarely leads to portopulmonary hypertension, but congestive hepatopathy is frequently noted as a consequence of right heart failure. Patients with portopulmonary hypertension may have higher cardiac output and lower systemic vascular resistance indices than patients with idiopathic PAH (136). Although treating patients with portopulmonary hypertension may be particularly challenging because of preexisting systemic hypotension, limited data suggest that the therapy is essentially the same as in patients with decompensated pulmonary hypertension of other etiologies (137).

Portopulmonary hypertension is often asymptomatic and is discovered incidentally when patients with end-stage liver disease undergo evaluation for liver transplantation. Case reports and case series most commonly describe treating portopulmonary hypertension with intravenous epoprostenol (138, 139) or sildenafil (140, 141), often as a bridge to liver transplantation. There are no studies of therapy for critically ill patients with portopulmonary hypertension either before or after liver transplantation.

Portopulmonary hypertension is most problematic in the perioperative period surrounding liver transplantation. Some degree of pulmonary hypertension exists in up to 31% of liver transplant recipients (142), but severe pulmonary hypertension (mPAP >45 mm Hg) is considered by most to be a contraindication to liver transplantation. The mortality rate after
transplantation in patients with porto-pulmonary hypertension is 36% (102), and in patients with severe pulmonary hypertension is 50% to 100%, predominately due to right heart failure (142). Because of these poor outcomes, the number of patients with moderate to severe portopulmonary hypertension who have been transplanted is small. As a result, there are only rare case reports of the use of epoprostenol or inhaled nitric oxide after liver transplantation (103, 143), and no prospective studies.

**Postoperative Pulmonary Hypertension**

Cardiac and thoracic surgery may be complicated by postoperative pulmonary hypertension. Pulmonary hypertension is recognized as a major risk factor for morbidity and mortality in cardiothoracic surgery (144). Although the etiology of postoperative pulmonary hypertension is unclear, pulmonary parenchymal and endothelial injury due to cardiopulmonary bypass (145–147) and ischemia-reperfusion injury (148) have been implicated after cardiac surgery, cardiac or lung transplantation, and pneumonectomy. A variety of approaches to the therapy of pulmonary hypertension and right ventricular failure have been used in patients who have undergone cardiac or thoracic surgery or transplantation, and combined therapy is commonly used.

In small series, both inhaled prostacyclin and nitric oxide have been shown to be valuable in treating pulmonary hypertension after mitral valve replacement (149, 150) and other types of cardiac surgery requiring cardiopulmonary bypass (148). Pulmonary hypertension in the early postoperative period after cardiac transplantation may be particularly difficult to manage, and approaches such as the use of inhaled nitric oxide, prostacyclin, and prostaglandin E1 have been used in small case series (151). In patients with pulmonary hypertension related to low cardiac output following cardiac surgery, dobutamine and milrinone may be useful (146), but may cause hypotension requiring the concomitant use of vasopressor therapy.

In spite of a paucity of prospective data, inhaled nitric oxide is being increasingly used in critically ill patients and is associated with improved outcomes in postoperative patients when compared with critically ill medical patients. A retrospective study of inhaled nitric oxide compared 317 postoperative patients with 59 medical patients and found the highest survival rates in patients who had received heart or lung transplants, and the lowest survival rates in medical patients (152). The vast majority of the postoperative patients in this study received nitric oxide for severe pulmonary hypertension or right ventricular failure after cardiac transplantation, lung transplantation, cardiac surgery, or ventricular assist device placement. After cardiac transplantation, the use of inhaled nitric oxide is associated with improved PVR and right ventricular function and a trend toward improved survival when compared with historic controls (153). Treatment of postcardiac surgery pulmonary hypertension with inhaled nitric oxide, compared with milrinone, also has been shown to cause less heart rate elevation, improved right ventricular ejection fraction, and a decreased need for vasopressor therapy (154).

In a group of patients who were difficult to wean from cardiopulmonary bypass because of isolated right ventricular failure, inhaled iloprost was successfully used to reduce pulmonary vascular resistance (155). Inhaled iloprost also was shown to be effective in treating pulmonary hypertension and acute right ventricular dysfunction in another small perioperative study of eight cardiac transplant patients (156).

Sildenafil also has been cited in case reports in combination with inhaled nitric oxide (157) or as an aid to weaning inhaled nitric oxide after left ventricular assist-device placement (158) or cardiac transplantation complicated by severe pulmonary hypertension (159). It also was useful in a series of eight patients to facilitate weaning from intravenous vasodilators after mitral valve surgery or left ventricular assist-device placement (101), but no prospective studies of its use in the ICU have been published.

**Pulmonary Veno-Occlusive Disease**

Pulmonary veno-occlusive disease is a rare cause of pulmonary hypertension, accounting for only about 10% of idiopathic cases (160). Pulmonary veno-occlusive disease is characterized pathologically by fibrotic changes in small pulmonary veins and by dilation of pulmonary and pleural lymphatics. Chest radiographs may show Kerley B lines (161); computed tomography reveals ground glass opacities and thickened septal lines (162). In spite of its rarity, pulmonary veno-occlusive disease deserves mention, because pulmonary vasodilator therapy typically used for PAH may cause life-threatening pulmonary edema. Nonetheless, options for treatment are limited, and a cautious trial of short-acting pulmonary vasodilators is reasonable (163).

**Pulmonary Hypertension and Pregnancy**

The mortality rate in women with pulmonary hypertension who become pregnant ranges from 30% to 56%, depending on the underlying cause (162). Pregnancy causes an increase in circulating blood volume by nearly 50%, with a concomitant increase in cardiac output and decreased systemic vascular resistance, as well as an increase in oxygen consumption. After delivery, circulating blood volume increases further and venous return increases as the uterus involutes, worsening right ventricular strain. Hospitalization is recommended at approximately 20 wks and treatment to avoid volume overload is an important part of management. Epoprostenol is often necessary, and inhaled nitric oxide has been used in the immediate peripartum period. In animal studies, inhaled iloprost has been linked to teratogenicity and fetal wastage (162) and bosentan can be teratogenic (163).

**CONCLUSIONS**

Pulmonary hypertension and concomitant right ventricular failure present a particular therapeutic challenge in hemodynamically unstable patients in the ICU. Typical therapies such as volume resuscitation and mechanical ventilation may worsen hemodynamics and further complicate management. To determine appropriate therapy, the approach to patients with pulmonary hypertension in the ICU must begin with identification of the underlying cause. Patients with decompensated PAH, including patients with preexisting PAH or with pulmonary hypertension associated with cardiac or thoracic transplant surgery, require therapy for right ventricular failure. Hemodynamic collapse caused by acute massive pulmonary embolism requires urgent relief of vascular obstruction. Patients with pulmonary hypertension resulting from critical illness or chronic lung disease are
unlikely to suffer from underlying pulmonary vascular disease, and their treatment should address the primary cause of their hemodynamic deterioration. Although very few human studies have addressed the use of vasopressors and pulmonary vasodilators in critically ill, hypotensive patients with chronic PAH and right ventricular failure, the use of dobutamine, inhaled nitric oxide, and intravenous prostacyclin have the greatest support in the literature. The use of other agents should be guided by an understanding of their effects on the right ventricle and pulmonary circulation, and by the comorbid conditions of the patients being treated.

REFERENCES


142. Ramsay MA: The perioperative management of portopulmonary hypertension with NO and epoprostenol. Anesthesiology 1999; 90: 299–301


