Mechanical Ventilation

Shari McKeown, RRT
Respiratory Services - VGH
Objectives

- Describe indications for mcvent
- Describe types of breaths and modes of ventilation
- Describe compliance and resistance and how this affects ventilation
- Describe ventilator troubleshooting
Indications for McVent

- Oxygenation abnormalities
 - Refractory hypoxemia
 - Need for positive end expiratory pressure (PEEP)
 - Excessive work of breathing
Indications for McVent – cont’d

- Ventilation abnormalities
 - Respiratory muscle dysfunction
 - Respiratory muscle fatigue
 - Chest wall abnormalities
 - Neuromuscular disease
 - Decreased ventilatory drive
 - Increased airway resistance and/or obstruction
Modes of Ventilation

- ASV, APRV, AV, AutoMode, Bilevel, BiPAP, EPAP, Fluid Logic, HFJV, HFOV, IPPV, IPAP, MMV, NEEP, PAV, PCV+, PCIRV, PCSIMV, PRVS, PRVC, PV, VCIRV, IRV, VS, etc, etc, etc!!!
Types of Ventilator Modes

- **Mandatory**
 - Operator sets RR
 - Operator sets start, stop, and everything in between
 - Patient can trigger extra mandatory breaths

- **Spontaneous**
 - Patient sets RR
 - Patient controls start, stop
 - Patient triggers all breaths
Types of Ventilator Breaths

- **Mandatory**
 - Volume Breath
 - Flow set
 - Volume cycled
 - Pressure Breath
 - Pressure set
 - Time cycled

- **Spontaneous**
 - Pressure supported breath
 - Pressure set
 - Patient insp flow cycled
Choosing a Mode

- Consider trial of NPPV
- Determine patient needs
- Identify goals
 - Adequate ventilation and oxygenation
 - Decreased work of breathing
 - Patient comfort and synchrony
 - Remove vent asap
Spontaneous Ventilation
Continuous Positive Airway Pressure (CPAP)

- No machine breaths delivered
- Allows spontaneous breathing at elevated baseline pressure
- Patient has complete control over RR and tidal volume

Spontaneous Ventilation with Continuous Positive Airway Pressure (CPAP)
Pressure Support

- RR triggered by patient
- Preset level of inspiratory support delivered
- Cycles to expiration when inspiratory flow slows to preset level
- VT depends on compliance, resistance, pressure level, and patient effort
Pressure Support – cont’d

- **Advantages**
 - Patient comfort
 - Decreased work of breathing
 - May enhance patient-ventilator synchrony

- **Disadvantages**
 - Variable volumes
 - Inappropriate support
 - Relies on apnea backup
 - Leaks may interfere with cycling
Assist-Control (Volume)

- Set RR, set tidal volume, insp pressure variable
- Patient triggers extra breaths with full tidal volume
- Advantages: guarantees minute ventilation
- Disadvantages: hyperventilation, hemodynamic effects, ‘breath stacking’
Assist-Control (Pressure)

- Set RR, set insp pressure, tidal volume variable
- Patient triggers extra breaths with full pressure
- Advantages: limits pressure
- Disadvantages: hyperventilation, hemodynamic effects, ‘breath stacking’
Synchronized Intermittent Mandatory Ventilation (SIMV)

- **Mandatory breaths** – volume or pressure breaths
- **Spontaneous breaths** – pressure support
SIMV – cont’d

- **Advantages**
 - Less hemodynamic effects
 - Less inappropriate hyperventilation
 - Guarantees some minute ventilation

- **Disadvantages:**
 - Not physiological
Measurements

- Compliance
- Resistance
- Peak airway pressure
- Plateau pressure
Compliance

- Measures compliance of the lung and thorax
- Tidal volume / Plateau-PEEP
- Units = ml/cmH\textsubscript{2}O
Resistance

- Measures airway resistance
 - Length
 - Viscosity
 - Flow
 - Radius4

- Peak-plateau / Flowrate
- Units = cmH$_2$O/Lps
Peak and Plateau Pressures

■ **Peak airway pressure reflects**
 - Baseline (PEEP)
 - Pressure due to compliance (L+T)
 - Pressure due to resistance

■ **Plateau pressure (breath hold) reflects**
 - Baseline (PEEP)
 - Pressure due to compliance (L+T)
 - (alveolar distending pressure)
Waveform

Assist-Control Ventilation with PEEP
Troubleshooting
Mechanical Ventilation 2

Fundamentals of Critical Care Support
Objectives

- Initiation of mcvent
- Monitoring
- Improving oxygenation
- Improving ventilation
- Obstructive Lung Disorders
- Restrictive Lung Disorders
- Pediatric considerations
Initiation of McVent

- Choose your mode
- Set minute ventilation for pH
 - RR
 - VT (8-10 ml/kg)
 - I:E
- Set oxygenation for SpO2 or SaO2
 - PEEP
 - FiO2
- Trigger level
Initiation cont’d

- Set sedation, analgesia, NM blockade
- Monitors
 - ECG, SpO2, Vitals, Observation
- Alarms
 - Hi/Low pressure
 - Low volume
 - Apnea
- Humidification
Initiation cont’d

- **Evaluation**
 - CXR
 - Peak/plateau
 - Exhaled VT and RR(TOT)
 - Patient-Ventilator synchrony
 - Autopeep
 - SpO2, ABG
 - Hemodynamics
Improving Oxygenation

- FiO2
- Mean Airway Pressure
 - PEEP
 - Recruit lung
 - Improve compliance
 - Redistribute lung water/blood
 - Insp pressure
 - Inspiratory time
- Goal Sp02 >92%, FiO2 <0.50
Improving Ventilation

- **Tidal Volume**
 - Watch Plateau

- **Respiratory Rate**
 - Watch for Autopeep

- **Goal pH = normal**
Obstructive Lung Disorders

- Asthma/COPD
 - Inflammation
 - Bronchoconstriction
 - Inc. mucous prod/Dec. clearance
 - Decreased expiratory flowrates
 - Autopeep
 - Hemodynamic compromise
 - Barotrauma
Obstructive Lung Disorders - Ventilator Strategies

- Decrease RR
 - Sedation to decrease drive
- Permissive Hypercapnia
 - pH >7.25
 - Contraindications Heads, Hearts
- Plateau <30cmH20
Restrictive Lung Disorders

- **Intrapulmonary**
 - ARDS
 - CHF
 - Pneumonia
 - Fibrosis

- **Extrapulmonary**
 - Obesity
 - Pregnancy
 - Ascites
Restrictive Lung Disorders – Ventilatory Strategies

- **Intrapulmonary**
 - Recruit collapsed lung
 - High PEEP
 - Increase TI
 - Prevent overdistension
 - Plateau <30cmH20
 - VT 4-6 ml/kg
 - Goal FiO2 <0.50?

- **Extrapulmonary**
 - Same as above, with Plateau <40cmH20
Pediatric Considerations

- Infants (<5 kg)
 - Time-cycled, pressure limited modes
 - Start Peak pressure 18-20 cmH20
 - TI .5-.6 sec
 - VT to chest expansion or 8 ml/kg
 - PEEP 2-4
Pediatric Considerations – cont’d

Children

- SIMV mode
- VT 8-10 ml/kg
- TI
 - Infants - .5-.6 sec
 - Toddlers - .6-.8 sec
 - Older - .8-1.0 sec
- RR < 18-20
- Peep 5
Mechanical Ventilation